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a b s t r a c t

The existence and stability of stationary cluster structures in uniform chains of dissipatively coupled
rotators is investigated. Cluster synchronization is interpreted as the classical synchronization of cluster
rotators, which are elementary structure-forming objects. The complete set of types of cluster rotators and
simple cells is defined. This definition is equivalent to the definition of the complete set of types of cluster
structures. The completeness of this set is proved. The problem of the stability of cluster structures is
solved. Physical examples of chains of rotators and a physical interpretation of the results of this research
are given.

© 2009 Elsevier Ltd. All rights reserved.

In uniform lattices a group of elements that have identical dynamical behaviour is called a cluster. In particular, if elementary systems
are self-oscillating, the identical nature of their behaviour is specified by their synchronization. A cluster structure is an ordered ensemble
of clusters that represents spatiotemporal order with respect to the natural coordinates of the lattice. The result of the formation of a cluster
structure is called “cluster synchronization” and is interpreted from the point of view of the existence and stability of invariant manifolds
in the lattice.1–3

The simple physical nature of cluster structures in lattices of oscillators was demonstrated in Ref. 4, and they were interpreted as a result
of the simple (in the sense of a rotation number5) classical synchronization of the structure-forming objects. A uniform lattice itself is a
special case of a coupled system of these objects.

Unlike the investigation of lattices of oscillators, the investigation of the dynamics of lattices of rotators involves additional difficulties
due to the cylindrical nature of the phase space, which, in particular, complicates the effective use of Lyapunov function methodology. For
this reason, the number of analytical studies of the cluster dynamics of lattices of rotators is small.6,7

As a continuation of previous work4, the cluster structure in a very simple lattice, viz., a chain of rotators with Neumann boundary
conditions, is investigated below.

1. General concepts and definitions

Definition 1. We define a rotator as a dynamical system of the form

(1.1)

that is assigned in the cylindrical phase space

System (1.1) can be non-autonomous. One of the variables, for example, xm, can serve as “time.” In the non-autonomous case, we will
assume that the system is periodic in time.
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The simplest rotator is described by the well-known second-order differential equation of a pendulum

When different forms of the periodic functions g(�) and f(�) are used, this equation describes the dynamics of a physical pendulum moving
under the action of a constant torque in a viscous medium, a superconducting Josephson junction,8 a synchronous electrical device,9 a
phase synchronization system10 and many other physical systems.

Henceforth we will call system (1.1) elementary, and we will assume that its dynamics are known.

Definition 2. We will define a symmetrical (asymmetrical) cluster rotator, i.e., a cluster rotator of type Rs(n) (type Ra(n)), as a system of n
coupled elementary rotators of the form

(1.2)

provided there is an attractor As(n) (Aa(n)) such that

where C = diag(c1, c2, . . ., cm+1) is the coupling matrix of the elementary rotators, in the phase space Tn × Rmn of the system. The values of
the elements ci are equal to zero or unity, � is the scalar coupling parameter, and ⊗ is the symbol of a direct matrix product.

The names of the cluster rotators are associated with the symmetrical (asymmetrical) character of the “cluster” matrix B�. In the general
case, a cluster attractor corresponds to the conditions of regular or chaotic stationary pulsations in the system of elementary rotators that
make up a cluster rotator.

According to the definition of a cluster attractor, the attractor A�(n) lies outside of any invariant manifolds of system (1.2), and among
the elements R�(n) there are no identically synchronized elements. A symbolic representation of a cluster rotator of type Rs(n) in the
“working” regime is shown in Fig. 1a. Each of the elementary rotators has its own shading. This reflects the fact that there are no mutual
synchronizations.

Consider a system of k coupled cluster rotators of type Rs(n) that have the form

(1.3)

System (1.3) is written for an even number of rotators k. In the case of an odd value of k, the replacement C* → C* should be made in the
last equation of the system.

Fig. 1.
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We note the obvious. System (1.3) has a “principal” integral manifold M(n) = {X = Y = Z = . . . = W}. It is also obvious that this manifold is
filled with trajectories of a cluster rotator of type Rs(n). The cluster attractor (attractors) As(n) ⊂ M(n). Thus, if the entire manifold or the
part of it that contains As(n) together with its region of attraction11 is stable for certain �i, a regime of simple synchronization of the cluster
rotators on the attractor As(n) is also stable.

We now assume that

Under this assumption, when system (1.3) is written relative to elementary rotators, it represents a uniform chain of the form

(1.4)

Thus, on the one hand, the chain of rotators (1.4) is a special case of the system of cluster rotators (1.3). On the other hand, if there is a
regime with simple synchronization of the cluster rotators in system (1.3), there will be a cluster structure with the sequence of clusters
depicted in Fig. 1b in the corresponding chain.

If the number of cluster rotators is even, the chain will have the so-called “central” cluster structure, and if the number is odd, the chain
will have the “alternative” structure.2,3

We will assume that the synchronization regime is perfectly exact (the non-physical character of the situation is of no significance). In
such a case, the connections between the synchronized rotators can be broken without disrupting the dynamical regime. In electrical circuits
such a procedure corresponds to cutting connections that join equipotential points (in Fig. 1b a symbolic knife is drawn on the connections
between the synchronized rotators). The “partitionability” of the cluster structure into an even number of identical structure-forming
objects is one of its main properties.

The cluster rotators of type Ra(n) differ from the cluster rotators of type Rs(n) not only in their matrices. They also exist only in pairs and
are joined to one another with degeneracy of the number of degrees of freedom by the number of degrees of freedom of one elementary
rotator (rigid coupling). The synchronization regime of a coupled pair forms a non-partitionable cluster structure.

Definition 3. The union of identical cluster rotators, whose synchronization regime defines a non-partitionable cluster structure, is called
a simple cell.

By definition, a cluster rotator of type Rs(n) is itself a simple cell. A simple cell based on a pair of cluster rotators of type Ra(n) is shown
in Fig. 1c. The middle elementary oscillator (the nth elementary oscillatory) is “shared.”4 The elementary rotators that are equidistant from
the ends are synchronized rotators (the central structure). The imposition of rigid connections between synchronized oscillators (between
their corresponding variables) clearly does not disrupt the dynamical regime of the simple cell. In electrical circuits this corresponds to
short-circuiting equipotential points. In the symbolic representation this procedure corresponds to folding of the simple cell at the central
oscillator with the superposition of squares that have the same shading, i.e., convolution. As a result of this folding, the cell is reduced to
one cluster rotator, i.e., Ra(n). “Convolutability” to one cluster rotator is a principal property of a simple cell. Note that the dynamical system
of the simple cell consists of Eq. (1.2) with a (2n − 1) × (2n − 1) matrix. The synthesis of a cluster structure based on synchronized simple
cells occurs according to the same principle as in the case of the cluster rotators Rs(n). In Fig. 1b Rs(n) is replaced by the simple cell Ra(n).

1.1. General properties of cluster structures

1◦. Any stationary cluster structure in a chain corresponds uniquely to the simple synchronization of a certain number of identical cluster
rotators of one of two types: Rs(n) or Ra(n).

2◦. Any cluster structure can be partitioned into an integer number of identical simple cells, which are convolutable to a one cluster rotator.
3◦. A structure that does not have the partitionability and convolutability properties, i.e., is not reducible to one cluster rotator, is not a

cluster structure and does not exist.
4◦. Let p be the number of all odd cofactors of the number N, and let q be the number of all of its even cofactors (simple and composite

cofactors, cofactors that differ from unity and the number N itself). If N is an odd number, p alternative cluster structures based on
cluster rotators of type Rs(n) and p + 1 central cluster structures based on cluster rotators of type Ra(n) exist in a chain. If N is an even
number, p alternative cluster structures based on cluster rotators of type Rs(n), p central cluster structures based on cluster rotators of
type Ra(n) and q central cluster structures based on cluster rotators of type Rs(n) exist. The total number of cluster structures, including
the single-cluster (trivial) and N-cluster structures is equal to 2p + 3 if N is odd and to 2p + q + 2 if N is even.

2. The model

Consider a dynamical system of the form

(2.1)

which is assigned in the toroidal phase space

where C > 0 and � > 0 are dimensionless parameters that have the meaning of the moment of inertia and constant angular momentum of
the rotator, A and �0 are the amplitude and frequency of the external action, and � is the coupling parameter of the rotators.
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Fig. 2.

The system is considered with the Neumann boundary conditions

(2.2)

Equations of type (1.1) describe the dynamics of a whole class of mechanical, electromechanical, quantum-mechanical and other systems.

Example 1. Fig. 2 depicts a chain of Froude pendulums.12 The suspending sleeves of the pendulums are slipped over a shaft, which is
brought into rotational motion with constant frequency � or into rotation-oscillatory motion with frequency � + � sin �0t. There is viscous
friction between all the sleeves and the shaft, as well as between all the contacting sleeves. The walls of the outer sleeves are fairly thin at
the points of contact, so that the lengths of the pendulums are assumed to be identical.

In dimensional variables and parameters, the equations of motion of the system, i.e., the chain of pendulums, have the form

with boundary conditions (2.2).
Here R(� + �sin� − �i) is the moment of the viscous friction force created by the shaft, and �(�̇i−1 − �̇i) and �(�̇i+1 − �̇i) are the moments

of the friction forces created by adjacent pendulums. After dividing the equations by mgl and changing to dimensionless time, we obtain
Eq. (2.1). The relation between the dimensionless time and the dimensional time, and the relations between the dimensionless parameters
and the dimensional parameters of the model have the forms

Example 2. The state of a superconducting junction (a Josephson contact) is described by two variables: the phase difference � between
the quantum-mechanical order functions and the potential difference between the superconductors �̇ = V (in dimensionless time).13 In
the resistive model with dimensionless variables and parameters, a separate non-autonomous superconducting junction is described by
the pendulum equation from system (2.1). The parameters of the model have the following physical meanings: C is the capacitance of
the junction, � is the current from the external source, and A and �0 are the amplitude and frequency of the external microwave field. In
dimensionless form, �̇ = V = � is the Josephson relation.

Fig. 3 shows a chain of dissipatively coupled superconducting junctions (they are represented by crosses) with uniform injection of a
constant current, which is immersed in an external microwave field.

For the current of an arbitrary junction, we have system (2.1), where � is the conductivity (the reciprocal of the dimensionless resistance
R of the junction). The condition 〈�̇i〉t = 0 (equilibrium states and oscillatory motions of the ith pendulum, Fig. 2) corresponds to the
superconducting state of the junction, and the condition 〈�̇i〉t /= 0 (rotational motions of the pendulum) corresponds to the resistive state
(the generation regime).

From a comparison of the physical systems in Examples 1 and 2, we obtain the following equivalence between the electrical and
mechanical quantities: V (the voltage) ∼ �̇ = �, 1/R (the conductivity of the junction) ∼ � (the coefficient of viscous friction), and I (the
current) ∼ M (the moment). In this case, Ohm’s law (Vk+1 − Vk)/R = Ik expresses the moment of the viscous friction force exerted by the
(k + 1)th rotator on the kth rotator.

Theorem 1. The cluster rotators Rs(n) and Ra(n) comprise the complete set of types of cluster rotators in a chain of elementary rotators with
Neumann boundary conditions. Simple synchronization of these cluster rotators defines all possible types of cluster structures that exist in the
chain.

Fig. 3.
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Fig. 4.

Proof. We will prove the theorem using elementary physics by considering an electronic circuit (Fig. 3) and taking into account the
equivalence of the electrical and mechanical quantities. We will use “equipotential” transformations of the chain, i.e., removal (severing) of
the connections that join equipotential points and the short-circuiting of such points. After these transformations, the dynamical regimes
of the system under consideration remain unchanged.

We will assume that a certain cluster structure forms in the chain and that only the first n elementary rotators are not synchronized,
i.e., the (n + 1)th elementary rotator is synchronized with one of the first n elementary rotators.

We will initially assume that the (n + 1)th rotator is synchronized with the kth rotator, provided that k ≤ n − 2. In such a case the values
of all the corresponding physical variables of the synchronized rotators are identical at any time. Their “input” points are equipotential,
i.e., Vk = Vn+1 (Fig. 3). By using a contact bar to connect the equipotential points, we can perform the schematic transformations depicted in
Fig. 4. From the equations for the currents in the synchronized rotators in the first and last positions of the diagram, we obtain

There is a contradiction: the system consisting of the first n elementary rotators contains synchronized rotators. Thus, the (n + 1)th rotator
cannot be synchronized with any rotator with index k if k ≤ n − 2. Two cases remain: either k = n or k = n − 1.

Let us assume that k = n, i.e., Vn = Vn+1, For the input currents of the synchronized rotators, we have

i.e., the (n – 1)th and (n + 2)th rotators are also synchronized with one another. Writing the equations for the currents in these rotators, we
obtain

Continuing the sequence of equations for the currents in the synchronized rotators, we obtain V1 = V2n. The rotator numbered 2n + 1
can be synchronized either with the 2nth rotator or with the (2n – 1)th rotator. We will assume that it is synchronized with the (2n − 1)th
rotator, i.e., V2n+1 = V2n−1. Writing down the equations for the currents in the first and 2nth rotators, we obtain

There is a contradiction: the system consisting of the first n rotators contains synchronized rotators. For example, the (2n + 1)th rotator is
synchronized with the 2nth rotator. By repeatedly applying this reasoning, we obtain the sequence of synchronized rotators in the chain
shown in Fig. 1b. We will show that in this case the cluster structure contains an integer number of cluster rotators of type Rs(n), N = mn. Let
us assume the opposite: in the sequence of synchronized rotators shown in Fig. 1b, the number of unsynchronized rotators at the end of the
chain is equal to k < n. We remove all the cluster rotators from the structure, leaving the penultimate cluster rotator and the unsynchronized
rotators just mentioned. We number the remaining rotators from unity to k + n. In this case we have the structure shown in Fig. 1b which
ends with the rotator with the index n + k, i.e., Vn+k+1−i = Vn−k+i (i = 1, 2, . . . k). The equations for the currents in the synchronized last rotator
and the (n − k + 1)th rotator have the form

From these equations we obtain that, Vn−k = Vn−k+1. If k /= n, the system consisting of the first n rotators is not a cluster rotator, which
contradicts the condition that the first n rotators are not synchronized, and if k = n, we have V0 = V1, which is the boundary condition.

Thus, under the condition Xn = Xn+1 a cluster structure based on cluster rotators of type Rs(n) is formed. Taking into account this equality
in the system, we obtain a subsystem consisting of the first n equations of type (1.2) with the matrix Bs, i.e., a cluster rotator of type Rs(n).

Finally, we will assume that the (n + 1)th rotator is synchronized with the (n − 1)th rotator, i.e., Vn–1 = Vn+1. Writing the equations for the
currents in these rotators, we obtain

Successively writing the equations for the currents, we obtain Vi = V2n−i, (i = 1, 2, . . ., n − 1), i.e., a system of 2n − 1 rotators, which is a simple
cell formed by a pair of cluster rotators of type Ra(n). Taking into account the equality Xn–1 = Xn+1 in system (1.4), we obtain a subsystem
consisting of n first equations of the form (1.2) with the matrix Ba, i.e., a cluster rotator of type Ra(n). The proof that there is an integer
number of simple cells in the cluster structure is carried out in the same way as above.

Thus, Rs(n) and Ra(n) make up the complete set of types of structure-forming objects in a chain with Neumann boundary conditions.
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3. Autonomous chain

Setting A = 0 in equalities (2.1) and transforming the time by setting
√

C−1t = 	, we obtain the system

(3.1)

with boundary conditions (2.2), where � =
√

C−1, �0 = �
√

C−1.

3.1. Some general properties of system (3.1)

1◦. In the phase space TN × RN of the system, there are no closed trajectories of the oscillatory type.

In fact, the derivative of the periodic Lyapunov function

calculated by virtue of equalities (3.1) is non-positive over the entire phase space of the system:

which demonstrates property 1◦.
Thus, the limit sets of trajectories of system (3.1) are equilibrium states and (or) sets of the rotational type (rotationally-oscillatory and

rotational limit cycles, tori and possibly chaotic limit sets).

2◦. The phase space of the system contains the “principal” integral manifold

(3.2)

which has the form of a cylinder filled with trajectories of an elementary rotator of the form

(3.3)

This property is obvious.
The partitioning of the (�, �) parameter plane of an elementary rotator into regions that correspond to qualitatively different structures

of the trajectories on the (�, �̇) cylinder is well known.9

3.2. Brief information on the properties of Eq. (3.3)

Fig. 5 shows a bifurcation diagram of the (�, �) parameter plane (Fig. 5a) and phase portraits of the rotator on a scan of the (�, �̇) phase
cylinder for parameters from each region (Fig. 5b-d). Region 1 corresponds to global stability of the equilibrium state O1(arcsin �, 0) (Fig. 5b).
The Tricomi curve �*(�) corresponds to a separatrix loop of the saddle O2(
 – arcsin �, 0) (saddle node for � > �̂), from which a stable
limit cycle of the second kind is generated when the parameters transfer from region 1 into region 2 (when they transfer from region 1 to
region 3) (Fig. 5c). The straight line � = 1 corresponds to a complex equilibrium state of the saddle-node type, which vanishes when the
parameters transfer into region 3. For region 3 there is a single, globally asymptotically stable limit cycle of the second kind (Fig. 5d).

3◦. The stationary, spatially homogeneous dynamical regimes of the chain correspond to stable limit sets of phase trajectories that lie on the
principal manifold (3.2). The stable equilibrium state O1(arcsin �, 0) corresponds to resting Froude pendulums suspended at the same
angle; the limit cycle corresponds to in-phase rotation of all the pendulums in the chain. We will show that these limit sets are stable
not only on the manifold, but also along directions that are transverse to manifold (3.2). The replacement of variables ui = �i − �i+1,
u̇i = vi transforms equalities (3.1) into manifold (3.2). Using Lagrange’s theorem, we obtain

Fig. 5.
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(3.4)

3.3. Comments on system (3.4).

1◦. The variables ui, �i (i = 1, . . ., N) of system (3.4) are transverse to manifold (3.2), and the manifold itself corresponds to its trivial solution.
2◦. If �1 = �1 = �2 = �2 = . . . = �N = �, where �(t) is an arbitrary solution and (�, �̇) ∈ M(1), system (3.4) is a system in variations relative to

the entire manifold. If the solution �(t) = �*(t) corresponds to a stable limit set of the manifold, system (3.4) is a system in variations
relative to the part of the manifold M(1) that contains this limit set in its region of attraction.11 Thus, if the trivial solution of system
(3.4), written with respect to �(t) = �*(t), is stable, the corresponding dynamical regime of the chain is also stable.

We will write system (3.4) in the form of one equation

(3.5)

To prove the stability of the solution U = 0, we present the following theorem.

Theorem 2. The non-degenerate transformation U = SV, where S = S0 ⊗ I2 and S0 is the transforming matrix DN–1, transforms Eq. (3.5) into the
equivalent equation

(3.6)

where the �j = 4sin2
j/(2N) (j = 1, 2, . . ., N − 1) are roots of the matrix DN–1.

Proof. Making the replacement U = SV in Eq. (3.5), we obtain the equation

Using the properties of the direct product of matrices,14 we have

Eq. (3.6) follows as a result.
Note that Eq. (3.6) decomposes into the N − 1 second-order systems relative to (xi, yi)T = Vi:

If �0 = 0, each of these systems is a stable system in variations (an unperturbed system) relative to a solution corresponding to one of the
limit sets of trajectories of the pendulum equation (a stable equilibrium state, a stable limit cycle). If �0 /= 0, then for any fixed t = t0 there
is a right-handed rotation of the vector field of each of the systems on trajectories of the unperturbed system. Since all the trajectories of
the unperturbed system (in the expanded phase space) enter into a certain cylinder Z{t > t0, x2 + y2 ≤ R2(t0)}, lim

t0→∞
R(t0) = 0, and they do not

leave it, this also applies to the trajectories of the perturbed system. Then, the stability of each of the systems indicated follows from the
stability of the unperturbed system. Physically, this fact is trivial: additional dissipation is introduced into the stable system, and, naturally,
it only improves its stability. Hence, the solution V = 0 and, therefore, the solution U = 0 are stable.

The spatially homogeneous dynamical regime of the chain is stable for any, including an arbitrarily low, level of diffusional coupling.
In parameter region 1 (see Fig. 5a), when any initial conditions are assigned on the manifold M(1) and in a small neighbourhood near
it, the spatially homogeneous state of the chain is an equilibrium state. In parameter region 2, either an equilibrium state or a spatially
homogeneous regime of in-phase rotations of all the pendulums in the chain can be realized, depending on the initial conditions on the
manifold M(1). Finally, in parameter region 3, a spatially homogeneous regime of in-phase rotations of all the pendulums in the chain is
obtained under any initial conditions on the manifold M(1) and in a small neighbourhood near it.
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4. Cluster dynamics of an autonomous chain

4.1. Symmetric cluster rotators and cluster structures associated with them

We will introduce vectors and vector functions for an elementary rotator and a cluster rotator of type Rs(n) in the following manner

As a result, we obtain equations of types (1.1) and (1.2), respectively.
An analytical investigation of the conditions for the existence of a cluster attractor (attractors) is a very complex problem in the general

case. However, in special cases, for example, in the case of the parameters from region 2 (see Fig. 5a) and small values of the coupling
parameter, their existence is almost obvious. In fact, let n = 2 and let the parameters of the rotators belong to region 2. When �0 = 0, there
is a cluster attractor of the form L1 × O1

1, i.e., the Cartesian product of a stable cycle of the first rotator and a stable equilibrium state of the
second rotator. According to the continuity of the solutions with respect to �0, this limit set maintains topological equivalence and stability
for sufficiently small values of �0.

Consider a system of k interacting cluster rotators of type Rs(n) (1.3) under the condition �01 = �02 = . . . = �∗
0. Just as in Section 3, by

replacement of variables

we transform the system into the manifold M(n) = {X = Y = Z = . . . = W} and write the system obtained in the form of the single equation

(4.1)

Here J2n is the Jacobian matrix of the cluster rotator.
As above, the stability of a cluster state corresponds to the stability of the trivial solution of Eq. (4.1).

1◦. The case k = 2. Central n-cluster structure, N = 2n. In this case, Eq. (4.1) takes the form

(4.2)

We will use the perturbation theory of Lyapunov exponents of the solutions of linear systems.14–16 We will assume that the coupling
between the cluster rotators, as well as the coupling between the elementary rotators of the cluster rotator, are fairly small. We will also
assume that the cluster attractors are regular.

When �∗
0 = 0, Eq. (4.2) is an equation in variations relative to the solution � ∈ As(n). If the cluster attractor As(n) is regular (a stable

equilibrium state, a limit cycle or a torus), this (“generating”) equation is stable. For the perturbation norm we have

In the present case D = 2. By virtue of the linearity of the system, the estimate of the growth of its solutions is uniform with respect to the
initial condition.16 Hence we obtain an estimate for the leading exponent of the perturbed system

where � < 0 is the leading exponent of the unperturbed equation. The estimate of the solutions of the perturbed equation has the form

where the quantity � > 0 is as small as desired. If the parameter �∗
0 is so small that � + D�∗

0 < 0, then |U| → 0 as t → ∞, i.e., the solution
U = 0 of Eq. (4.2) and the cluster structure corresponding to it are stable. Setting �∗

0 = �0 (changing to a uniform chain), we obtain the stable
cluster structure depicted in Fig. 1b if all the cluster rotators except the first two are removed from it. In a chain of Froude pendulums with
k = 2 and n = 2, we obtain a two-cluster structure by removing two cluster rotators (four elementary rotators) shown in Fig. 2.
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2◦. The case k = 3. Alternative n-cluster structure, N = 3n. In this case, similarity transformations (the interchange of rows and corresponding
columns) reduce the coupling matrix D2n to a similar matrix of the form

By analogy with Theorem 2, there is a non-degenerate transformation

where S0 is the similarity transformation matrix for D2n, that brings Eq. (4.1) into the form

(4.3)

This equation, in turn, breaks down into a pair of identical equations of type (4.2) with the matrix Dn indicated. Applying the assumptions
of the perturbation theory described above to each of these equations, we obtain the stability of a cluster structure with regular internal
dynamics and a fairly small coupling parameter. In this case, D = 3.

Note that the roots of the cluster matrix Bs

and the roots of the matrix Bs + Dn

where j = 0, 1, . . ., n – 1, are related by the inequality �∗
j = �j , i.e., the entire spectrum of the matrix −(Bs + Dn) is located to the left of the

spectrum of the matrix −Bs.
Thus, in the case of the regular cluster attractors As(n), the synchronization of three cluster rotators is stable at least at a low coupling

level. Accordingly, the cluster structure shown in Fig. 1b is stable if all the cluster rotators except the first three are removed from it. In a
chain of Froude pendulums with k = 3 and n = 2, we obtain a two-cluster structure by removing one cluster rotator (two elementary rotators)
among the cluster rotators shown in Fig. 2.

The stability of cluster structures with regular dynamics is established in a similar manner in cases with k > 3.

4.2. Asymmetric cluster rotators and cluster structures associated with them

The stability conditions of cluster structures based on cluster rotators of type Ra(n) consist of the conditions for the stability of the
central cluster structure in a simple cell and the conditions for the stability of the synchronization of the simple cells themselves as
structure-forming objects.

We will investigate the synchronization of a pair of inertially coupled cluster rotators of type Ra(n). They are described by the system

(4.4)

The linearized system in differences between like variables of the cluster rotators has the form

(4.5)

When �∗
0 = 0, Eq. (4.5) is an equation in variations for the equation of a cluster rotator of type Ra(n) relative to the solution �(t) ∈ As(n). If

the cluster attractor As(n) is regular, this (“generating”) equation is stable. The perturbation norm satisfies the inequality

In this case D = 1. As above, when the coupling parameter �∗
0 is sufficiently small, the leading exponent of the perturbed equation obeys

the inequality �(U) ≤ � + D�∗
0 < 0, where � < 0 is the leading exponent of the unperturbed equation. Thus, the trivial solution of Eq. (4.5)

and the synchronization of the cluster rotators are stable.
We now assume that Xn = Yn (rigid coupling), Yi = X2n–i (i = 1, 2, . . ., n), and �∗

0 = �0. In this case, system (4.4) describes the simple cell
depicted in Fig. 1c.

When structures based on simple cells are synthesized, the latter are joined to one another just like symmetric cluster rotators. The
stability of the synchronization of simple cells as structure-forming objects and, as a consequence, the stability of the corresponding cluster
structures is investigated in the same way as the case of symmetric cluster rotators.
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5. A non-autonomous chain

We will investigate the dynamical properties of a non-autonomous system in the principal resonance zone by the method of averaging.

5.1. Transformation of the system to a standard form

Using the replacement of variables

where 
 = C−1,17 we reduce system (2.1) to the equivalent system of the form

(5.1)

where � − �0 = 
� is the frequency mismatch (principal resonance zone) and �i = �i − � are the phase mismatches. The parameters of the
individual rotators lie in regions 2 and 3 (Fig. 5a), in which there are rotational limit cycles.

In the case when 
 = C–1 < < 1, system (5.1) has the standard form of a system with one rapidly rotating phase �.18

5.2. The averaged system

Averaging system (5.1) over the fast phase and transforming the time 
	 = 	n, we obtain the averaged system

(5.2)

with boundary conditions

System (5.2), in turn, is reduced, by replacement of the time

to the single equation

(5.3)

Here

The averaged system (5.3) has the same form as the system of equations of an autonomous chain. The partitioning of the (�0, �0) parameter
plane into regions with qualitatively different dynamics for the “averaged” elementary rotator is generally the same as that shown in Fig. 5a
with known structures of the phase trajectories (Fig. 5b-d). The difference is confined to the fact that regions 1 and 2 are separated by a
certain band of width ∼
, which is “stretched” onto the Tricomi curve, rather than by the Tricomi curve itself. For parameters from this band,
the phase space of the non-autonomous rotator contains attracting homoclinic structures and the chaotic limit sets of phase trajectories
associated with them.19 It follows from the principle of averaging that if L is a certain limit set of trajectories of the averaged autonomous
system, L × S1 is the corresponding limit set of the non-autonomous system together with the stability conditions of L. On this basis the
dynamical properties of the autonomous chain (5.3) are reformulated for the non-autonomous case. For example, region 1 in the (�0, �0)
parameter plane is the region of global asymptotic stability of the limit cycle of the non-autonomous rotator (the synchronization region),
region 3 is the region of existence of the stable two-dimensional torus T2, region 2 is the region of existence of both of the limit sets that
are realized depending on the initial conditions, and regions 2 and 3 are the regions of existence of the cluster attractors. The investigation
of the stability of the cluster structures in a non-autonomous chain does not differ from the autonomous case.

Example 3. Numerical experiment. Cluster structures based on the cluster rotators Ra(2) and Rs(2) are synthesized using the method
described in Section 1. The stability of all the cluster structures that exist in a chain of six elementary rotators was investigated.

An autonomous chain. System (3.1) was examined with the parameter values � = 0.07, � = 0.28 and � = 0.29 for the case of N = 6. Fig. 6a–c
shows a simple cell of cluster rotators of type Ra(2). The cluster attractor Aa(2) is a rotationally-oscillatory limit cycle. The middle rotator
rotates, and the extreme rotators have an oscillatory regime. The oscillation amplitude is insignificant. The central cluster structure forms
on the basis of a pair of simple cells. The cluster structure is stable.

A non-autonomous chain. System (3.1) was examined for the parameter values

after adding a non-autonomous perturbation of the form A sin(�0t).
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Fig. 6.

Fig. 7.

Fig. 7a and b depict the cluster attractor As(2), which is the T3 torus of the cluster rotator Rs(2) in a projection onto the coordinate
planes of the elementary rotators. To illustrate the absence of synchronization of the elementary rotators, Fig. 7c shows a projection of this
attractor onto the plane of their like variables.

Acknowledgements

This research was partially financed by the Russian Foundation for Basic Research (06-08-00520 and 06-02-17158).

References

1. Josić K. Invariant manifolds and synchronization of coupled dynamical systems. Phys Rev Lett 1998;80(14):3053–6.
2. Belykh VN, Belykh IV, Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusely coupled dynamical systems. Phys Rev E 2000;62(5):6332–45.
3. Belykh VN, Belykh IV, Mosekilde E. Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys Rev E 2001;63(3), 036216-1–4.
4. Verichev NN, Verichev SN, Wiercigroch M. Physical interpretation and theory of existence of cluster structures in lattices of dynamical systems. Chaos, Solitons and Fractals

2007;34(4):1082–104.
5. Afraimovich VS, Verichev NN, Rabinovich MI. Stochastic synchronization of oscillations in dissipative systems. Izv Vuzov Radiofizika 1986;29(9):1060–160.
6. Watanabe S, van der Zant HSJ, Strogatz SH, Orlando TP. Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation. Physica D

1996;97(4):429–70.
7. Afraimovich VS, Nekorkin VI, Osipov GV, Shalfeev VD. Stability, Structures and Chaos in Nonlinear Synchronization Networks. Singapore: World Scientific; 1994.
8. Barone A, Paterno G. Physics and Applications of the Josephson Effect. New York: Wiley; 1982.
9. Bautin VN, Leontovich YeA. Methods and Means for the Qualitative Investigation of Dynamical Systems in a Plane. Moscow: Nauka; 1990.

10. Akimov VN, Belyustina LN, Belykh VN, et al. Phase Synchronization Systems. Moscow: Radio i Svyaz’; 1982.
11. Pliss VA. Integral Sets of Periodic Systems of Differential Equations. Moscow: Nauka; 1977.
12. Magnus K. Schwingungen. Stuttgart: Teubner; 2005.
13. Likharev KK. Introduction to the Dynamics of Josephson Junctions. Moscow: Nauka; 1985.
14. Lancaster P. The Theory of Matrices with Applications. New York: Academic Press; 1985.
15. Demidovich BP. Lectures on the Mathematical Theory of Stability. Moscow: Nauka; 1967.
16. Bylov BF, Vinograd RE, Grobman DM, Nemytskii VV. Theory of Lyapunov Exponents and its Application to Stability Problems. Moscow: Nauka; 1966.
17. Verichev NN. Investigation of systems with Josephson junctions using the rapidly rotating phase method. Radiotekh Elektron 1986;31(11):2267–74.
18. Volosov VM, Morgunov BI. The Method of Averaging in the Theory of Non-linear Oscillatory Systems. Moscow: Izd MGU; 1971.
19. Arnold VI. Additional Chapters in the Theory of Ordinary Differential Equations. Moscow: Nauka; 1978.

Translated by P.S.


	Cluster dynamics of a uniform chain of dissipatively coupled rotators
	General concepts and definitions
	General properties of cluster structures

	The model
	Autonomous chain
	Some general properties of system (3.1)
	Brief information on the properties of Eq. (3.3)
	Comments on system (3.4).

	Cluster dynamics of an autonomous chain
	Symmetric cluster rotators and cluster structures associated with them
	Asymmetric cluster rotators and cluster structures associated with them

	A non-autonomous chain
	Transformation of the system to a standard form
	The averaged system

	Acknowledgements
	References


